Restarted Gmres Preconditioned by Deeation

نویسندگان

  • Jocelyne Erhel
  • Kevin Burrage
  • Bert Pohl
چکیده

This paper presents a new preconditioning technique for the restarted GMRES algorithm. It is based on an invariant subspace approximation which is updated at each cycle. Numerical examples show that this deea-tion technique gives a more robust scheme than the restarted algorithm, at a low cost of operations and memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics

In a wide number of applications in computational science and engineering the solution of large linear systems of equations with several right-hand sides given at once is required. Direct methods based on Gaussian elimination are known to be especially appealing in that setting. Nevertheless when the dimension of the problem is very large, preconditioned block Krylov space solvers are often con...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Preconditioned Iterative Methods for Linear Systems, Eigenvalue and Singular Value Problems

In the present dissertation we consider three crucial problems of numerical linear algebra: solution of a linear system, an eigenvalue, and a singular value problem. We focus on the solution methods which are iterative by their nature, matrix-free, preconditioned and require a fixed amount of computational work per iteration. In particular, this manuscript aims to contribute to the areas of res...

متن کامل

On the Admissible Convergence Curves for Restarted Gmres

Abstract. This paper studies admissible convergence curves for restarted GMRES and their relation to the curves for full GMRES. It shows that stagnation at the end of a restart cycle is mirrored at the beginning of the next cycle. Otherwise, any non-increasing convergence curve is possible and pairs {A, b} are constructed such that when restarted GMRES is applied to Ax = b, prescribed residual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995